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Then, Sakata (1956) proposed, as a natural extension of the Fermi-Yang model,
that in order to incorporate strangeness, the proton, the neutron, and /\ hyperon are
to be considered as fundamental particles. z and E must be built as composite baryons
made of two of (p,m, A) and one of (p,n, A) as ZJE,' = A(EN)I=1 and AAY . The model
prec}icted correctly eight (octet) mesons, but when they tested the prediction of the
anomalous magnetic moments of hyperons, the model falled. Gell-Mann (1963) replaced
(p,n, A} by the hypothetical fermionsnamed quarks, (u,d,s). We start with Gell-Mann's
quark model.

2.2 SU(3) symmetry
2.2a Group theory of SU(3) _
To discuss mathematics of SU(3), we will not treat quark fields as quantized (anti-

commuting) fields, but change thelr ordering freely. Suppress their spin structure for
the time being, since it is inessential to group théory of SU(3).

SU(3) = all unitary transformations on three-component complex vectors less the
overall common phase rotation (called U(l), an abelian group).

u u' u + t
d)-—-b 4’ = Ut d with U'U = UU' = 1 and det U = 1.

s g' 5
foo ¥
(a lo) e'd
oal

According to a general theorem, any unitary transformation can be written in terms of

i

The condition det U = 1 removes the common phase transformation! 1%

exponentiated hermitian operators as U = exp{i H). In the present case, if we exhaust

all 3 %3 hermitian matriges for H, we include all possible 3% 3 unitary transformations;

U=exp[iZ ia & ]

— 2 aa
with a=0
010 . fo-10 100 001 0 0 -1 000 000
?\1 = (1 0 0) , /\;(i 0 o), }\3=(o -10), Rf 00 0), ls= 00 o), 16= 00 1), ).7= 0 0-i),
0a0o 000 000 100 ioo 010 010
100 Lfroo
We do not include a hermitian matrix 8%2) ’ AB = &H01 0;)
since it would contradiect with detU=1. 00-

The S5U(2) isospin rotation is a subgroup consisting of %(kl,)\z,:\s). There are two more

(%I w757 "i"-“s*g‘\a ) . and (%‘\5 o '%‘3*%‘8)'

They are sometimes called V-spin and U-spin subgroups, respectively.

5U(2) subgroups;

The eight matrices A_é(a=1,2.....8) are 3% 3 matrix realization (representation) of the

algebra of SU(3): 1

1 1
Iina' Eab l=1f

abe 2 ¢

The three~dimensional column vector comsisting of u,d,s is {the vector space of) the 3-

{c summed over from 1 to 8).

dimensional representation of SU(3) group. It is possible to realize the SU(3) algebra

[Aa.'Ab] =1 fabc Ac
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with 8 matrices of (NXN). Such representation is.called an N - dimensional representa-
tion of SU(3) and N is not arbitray (unlike SU(2)). The cecefficient fabc is called the

structure constant of SU{3) that determines completely the group structure of SU{3). It

possesses the property fabc = = facb = - fcba = - fbac ‘(totally antisymmetric under

permu_ta:ion of a pair of indices ) and its numeriecal values (with the choice of A’a as
given in the previous page) are:

B3 = 1 s 147 =F156 = fpu = fo5p = f345 = ~f367 = 1/2,

f458 = f678 =/3/2 . Other fabc not related to these are all 0.

When one takes anti-commutation relations of J\a, ope finds

i 1 - 1
AR, 1= a 82, = {100 :
Here, for convenience, we include .10 =E 010 ]Jto close the anti-commutation relations.
01 '

AD is pot ome of the SU(3) generators {(the name for Aa(a=1,2_---8)). The coefficient d, .

is given by (a,b,c = 0,1,2----- 8y
dabc = dacb = dcba = dbac {totally symmetric) . R -
diyg = dppg = 9335 = Y173 4 &y = d5gg = dgge = dypg = - Ej‘;' dggg = ‘E ,
G146 = G157 = % dpuy = dpsg = gy = dggs = = dyee = = dyn = 5
d-abO = % %ab (1,j = 0,1,2---8). Other dabc not rglated to these are all zero.

It should be noted that the anti-commutation relations are not the common relations of the

SU(3) group; for general NX N represenation, [A& ’Ab" # dabc/\c .
The folowing is a comparison chart between 5U{2) and SU{(3).

8
3 u u
. 3 i
(P)—) EXP(E E}_T‘:‘"da) (ﬁ) . ¢=> (d) —_— exp(% a=21 Aada) (d)

n
s 5

i, 1 I 1
(ZAs5A] =1 .5 A, -

‘g
R {lAa’%;’\b}: dabr.'}flc'

2

Representations of SU(3)

(2) Fundamental (spinor) representation.
The 3-dimensional {column vector) representation is called the fundamental represen-

tion of SU(3) in the sense thart all other fepresantations are constracted from products

of this 3-dimensional representation (even 3 representation).

u\ u
(d) — exp (%Aada) (d) {3 dim. representation)
s s
(4,d,8) = (u,d,s) exp(- —;_:'Aada) (3 ‘dim. representation).
u
The scalar product (u,E,E)-(d) is obviously invariant under SU(3) transformatiens.
s

Though the dimensions are the same, 3 and 3 are inequivalent unlike 2 and 2 in SuU(2).



Theorem: El;i

symmetric tensors.

transforms like ¢

2.9

1Jk (l) qk(2) under SU(3) where éj is the totally anti- \

[The number 1, 2 in the paratheses refer to coordinates or momenta.]

Proof: We first show that éjk qj(2) qk(3) qi(l) is invariant under SU({3).

Under SU(3) rotations,

i i

i
2,(1) 4@ a,(3) Ve Uy a0y a3
det q = ,qzm 15(2) 45(3)| —s Ui a, (1) Ui q,(2) U3 q,(3)
1
U Uy Uit[ap(1) q,(2) 94(3)
- | ug W a,(1) 4y(2) a,(3)| = det U-det q = det q .
2 3|
U U U ||ag(0) ay(2) 4y
This means that
ek @ eV* g o |
£ {k (1) a2 | —> ezj_t 9 (D) (D) | exp(= $2;%)
£79F 45 9y &% g /)
This theorem works for SU(N) group with the replacement EU Keeoee m ith""im .

In partiecular, for SU(.‘Z)
Products of 3 or (3 and ';’,)
Take a product of two 3's.

(b)

particle labels, they remzin symmetric or antisymmetric even after SU(3) rotations:

make invariant subspaces.

1, (1) @ a,(2)

9, (® q (D @q(3) =

EiJ is equivalent to Ei [Note that q'= 1 5‘2 'cIt.]
If the product is symmetrized or antisymmetrized in

Thay

= (qi(l) “-Ij(z) + qj(l) qi(z))'-"(qi(l) .qj (2) - qj (L) qi(z))
(ud-du) /W7
(su—us)/{f, (ds-sd} /W Z

uu, (ud+du)/¥?Z, dd
(us+su) /Y2, (ds+ad)//Z

55.
= 6

6 + 3

(tetally symmetric in (123))
+( symmetrize in (12), then antisymmetrize in (13})
+( symmetrize irr (13), then antisymmetrize in (12)})
+{totally antisymmetrize in (123))

10 UEE wuu, - (wudtudutduu) /Y3,  (uddtdud+ddu) V3, ddd
(uus+usutsun) /¥3, (uds+dus+usd+dsutsud+sdu) /¥6,  (ddstdsd+sdd) /3
(uss+sus+ssu) /¥3, (dss+sds+ssd) /Y3
588,
g ? 3 (1a,(2)q, (3) + 9,194 (2)q, (3) - q (1)a5(2)q,(3) - 9, (1)4;(2)q4(3)
~ ELn TULD a @ + By T ay(2)
B E_E] q; (Mq, (2)qk(3) + qk(l)qj(2)qi(3) qj(l)qicz)qk(B) - qj(l)qk(z)qiw)

mE
ij

T,2) 9,3+, T2 q;(3)
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o -
t £7% ¢, (1) ay(2) g .

The eight-dimenSional subspace obtainable by symmetrizing in (23) and then anti-
symmetrizing in (12) is linearly dependent on the two 8 dimensional representations
written above. Therefore,

3e3®3 = 1 + 8 + 8 + 10.

The eight dimensional representation can be cast in the form of

- i =% - '
T g @ - 18 W @, o0 TWA@NT.
As you can see from the form'ath, they transform exactly like the generators of the

group. Such representation is called the adjoint representation. Obwviously, the dimen-
sion of the adjoint representation is the dimension of the generatofs of the group.

In order to comstruct irreducible representations from products of fundamental
- representation (3), the following theorem is useful.
Theorem (Weyl)

Irreducible representations of SU(N) groups are also irreducible representations of
permutation group. The irreducible representations of permutation group are given by
symmetrizing and then antisymmetrizing indices according to the Young tableaus. {This
theorem works when you have only 3's or ?'s, not 3 and z in coexistence.]

We will not prove the theorem here (see H. Weyl, "Classical Groups" or M, Hamermesh,
Group Theory and its Applications to Physics Problems.)
It is easy to understand that tensors of definite permutation symmetry make an invariant
subspace (though irreducibility is far more difficult to prove). A product of fundamental
representations of definite permutation symmetry is written as

1ileenn.
c q,(1) q,(2) q,(3)+-*** m(n)

with a definite permutation symmetry-incorporated in CiJk,.... It transforms inte
Z‘ ijk.-.. p q r---ccc cenese
IR ¢ Yy Uj U qp(l) qq(Z) q.(3) q (n) .
p r--c-

However all the rotation matrice U are identical and therefore the coefficient

Pqre-e-. _ Ajke--- p g T
C Cc Ui Uj Uk
Ciikesss
possesses the same permutation symmetry as G s, ltself.

The following theorem (not independent of the one dbove) is also useful in physics.
Theorem '

In order to construct irreducible representations from qiqjqk‘°'- EquET--- ’

(1) symmetrize and/or antisymmetrize according to the Young tableau rule in (1jk----) and
{pgr+--.) separately, and

(2) Separate invariant subspaces and subspaces of lower dimensions by taking traces in

Pairs of upper and lower indices.



[a%]

211

=i i — —1 i — —
Zxample L ¢ ®aq = 365 Tr(q @ +(q qj-%S;Tr(qQ))- > 3®31=1 + 8
=1 _lsl o (a = _Lled o o ool oey el ) i .3
Example 2 (q G ~ 3 Sk Tr(qq))@(q a, = 3 Sm Tr(qq)) chg - with T, = sj = 0,
{1) T? Si = invariant. 1
. . . . m
1 o] _ pd e = s .
(2) (T_ S T Sj) g or and ome contraction. §A {antisym. under T §)
J Jgl _ 2l = & . .
(3) (T S + T Sj 3 Sm Tr(TS)) = or a with one contraction. §S
(4) E' ‘ (equivalent to 8,)
m and no contraction, but traces subtracted;

gl oqpd gl ol gd - qpd st

_ L i..0 o _ o3 o0y o i k| i} o0
k "m k “m m k m k 6 (T S Tn Sk) 5 (T S Tn Sm)

l J n 1 l i gh n i,
5 (T s - T_S7) - 3 ('.!?,[1 e~ T S
This is 10 dimensional represantation '
(5) ] )
and no contraction, but traces subtracted.
This is iﬁ representation (inequivalent to 10, just like E_inequivalent to 3}).

a e
(6) m and no contraction, but traces subtracted. This is 27.

Therefore, —
8®8 =1 + 8 + 8 + 10 + 10 + 27.

among these, (1, gs, 27) are even under T 4> 5, while (&A, 10, Iﬁ) are odd under T «> 5.

Remarks on the Young tableau rules

(1) # of boxes in the n-th row does not exceed # of boxes in the (n~1)-th row.

(2) # of boxes in the n-th column does not exceed # of boxes in the (n-1)-th column.

(3) Label boxes by particles (instead of states which particles occupy) in the ascending
order from top to bottom and from left to right. In this way you find how many equivalent.

representations exist.

(4) First symmetrize states of particles within each row and then antisymmetrize states

of particles within each column. -

2.2b Particle classification

Conserved guantum numbers: Two of Z.(a =1,2.---8) are simultaneously diagonalizable
(it is called that the SU(3) group has rank 2). We normally diagonalize 33 and AB as
shown before. 2%3 is identified with the third component of isocspin. jn 3 is called
3 3(u) = 1/2, I (d) =
-1/2, & (s) =0, Y(u) = 1/3, ¥(d) = 1/3, and Y(s) = -2/3. (E‘ are also eigenstates
of 13 and Y, but with eigenvalues opposite in sign, I (u) = —1/2 IB(E) = 1/2, 13653'=

the hypercharge Y. d are eigenstates of I, and Y with eigenvalues I
s

Y(W) = -1/3, Y(d) = -1/3, Y(s) = 2/3. One can defmne strangeness, if one wishes, as
1 u
§= /ﬁJﬁ - %-1 = (Oq_l) for quarks g) . The electric charges of gq's are to be determined

from the requirement that the baryons made of qqq have integral charges. Then we find

1 1
Q=I,+5Y=3 1 -z-2 A,a ( -1/31/3) .
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The operators of the "SU(3) charges"” in terms of creatlcn—annlhilation operators of

particles are given by_fd x :q .5;\_,'fq = ; ( T. (q)’g/\_b.ﬁs(q) - (q)‘ili di:' (q))
Therefore, the value of 13 for the one~u—quark state, for instance, is glvenTas
IU(P3S)> Z(le v ()4 b-—n - -1 l(q)"iABd—Isr 1 b (U-) IO) +-€b (u)l0>

e assign hadrons with the same JP a.ud with (approxmataly) the same mass into an
irraducible representation.
Mesons (made of qq):
—+& v rn—t
Singlets q qk/‘/— For instance, %'(0 ', 958 MeV)
By the obvious reasom, I(1) = 0 and Y(1) =

Octets. -3 _ 1] . o
. Ty 33 @) A~ a laq (1,j = 1,2,3: a=1,2....8)

13 I Y Q meson states of ls [3 J
Su = 330y -1A)g 1/2 } 1 k(495 Mev) (KA (892 HeV)]
. 1/2 1
5d = 3 a(A~13)q -1/2 0 K°(500 MeV) [K*°(892 MeV)]
du = 3 a(A -1k, 1 1 7 (140 Mev) [f (770 Mev)]
f—(uu—dd) = n.q) 0 1 0 0 2 (135 MeV) [9° (770 MeW)]
ud = q(l +id)q -1 -1 7 (140 MeV) [P (770 MeV)]
Ts = 2 q(A+A)q 1/2 - 0 K°(500 Mev) [K*°(892 MeV)]
_ e * } /2 -1 _ )
us = q(14+115)q ~1/2 -1 K (495 MeV) [K* (892 MeV)]
AGurdd-258) =7 AAgq 0 o o 0 7(549 MeV) [0) (783 MeV)] }
?
[é (1020 MeV)]

The eight states of 8 can be plotted with 13 in x-axis and ¥ in y-axis as
Kg 1 Y 4 Y
o—t—aKk* ' K5 1y o K"

K- K . P gre
Th eight states are also written in {3x 3) matrix with the columns referring to the indices

of If and the rowsreferring to the indices of q.

o +
N T A T
ML o= € -, 7 ) =!‘—,'\M ) - - & 0 for 1.
] 2 ﬁ+TE} K z2'aa f’ﬁ+ﬁj K*
K~ e, -2 K* =.0 2
’ ’ 1,?-2 ’ K&, "}?dg

Baryons (made of qqg):

N 1 -
Singlets. E,i']k 9494 - 1=Y-=0. A or Y°F (—;—, 405 MeV ),

ot Strangness need not be 0 for 1.
c . g, - . -
ets 93% F 93939~ Q939 T 99495 o

qquqk qkqjqi qjqiqk - quk,qi , or their linear cudbinations,



I Y

I3 '
{%(udu - duu) A Su 1/2
.. 1/2 i
J%(udd - dud) ~ sd -1/2
l —
ﬁ(suu - usu) A du 1
%(dsu*sdu?sudﬂsd)~ J-‘],ii-(ﬁu—a'd) 0 1 0
1,%-(ds.d -sdd) ~ uwd -1
I,,-l.(sus -uss) A ds 1/2 I
2 /2 -1
lei(dss - 5ds) ~ us -172 J
&( dsu~sdut+sud-usd o
—2uds+2dus) ,,‘ﬁ;(uu+dd-255) 0 0 0

p (938 MeV)
n (939 MeV)
+

p (1189 MeV)

3P (1192 MeV)

2‘(1197 MeV)

=7 (1315 MeV)
o

= (1321 MeV)
[N |

A (1116 Mev)

= F
baryon states of J =

+

ra =

2.13

Although the baryon octet is made of qqq, they transform exactly like the meson octet

with the appropriate correspondence written in the second column above.

therefore the baryon octet in the form of

: +

Bt = s =z, A

3 Z 7'
= 7

n

_J%A ’

where the rows refer to the third q of gqqq, while the columns refer to

Decuplet (totally symmetric gqqq):
uuu
1 .
1/ajn(ut.u:l-i-udu-!-lziuu)

fi}?( udd+dud+ddu)

ddd

v,-%(uus-i-usu+suu)

f%-( dustuds+dsutsdutusd+sud)
Jlg'(dds+dsd+sdd)

1
ﬁ(uss+5us+ssu)

J%(dss+sds+ssd)

555

3/2

1/2
3/2
=1/2

~3/2

1/2 1/2

-1/2

We can write

&ikmqk(l)qm(Z).

Q baryon states of JP= %+
2 AH (1232 MeV)

1 N (1232 Men)

0 A (1232 Mew)
-1 A (1232 Mev)

1 T (1382 Mev)

0 Z'° (1382 MeV)

-1 7 (1382 MeV)

o =% (1533 MeV)

-1 7 (1533 MeV)

-1 £ (1672 Meny
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Antiparicles
For the meson octets, antiparticles are contained in the same represantation as

their particles. In this sense, the meson octets are called "self-charge conjugate';
i c C).d
Mj — 'é Mi .
On the other hand, antibaryons make another representation (conjugate to the representa-

21T +hiE, =, =

tion of particles). c

i S, O d] T WA F
(qqq) (Ga9) 7. T, SYY (3

T ! —
The antibaryons of 10 resonances (A, :’:, .."‘...,Q) make 10 representation, as shown in the

I,-Y diagram below:

3 'd--—-.Aa—-—«-A...-—oAH-
\\ / A / A \'//
'-n' "P u" l-—\’ u—-‘Z‘“
Z' iu \ * \- o= \‘-N i0
» —-——-A a\  — Z g_ " = n
\\ ':{ .\'\ =° ' \-:L/

-3
(3.
<>
‘e
O
-—

=g — s 2= ! .
AT AN / _
‘_" / °  FT 3 S . a
Sy e
\ / N // / \ /I' “\ Y
- w Osom—— 8 - - _l—
P Lt - AT 0

2.2¢ SU(3) invariant interactions

Recall how we constructed the SU(2) invariant pion-nucleen Yukawa coupling :

JVJ.M = 1ig¥ 7’5-cN-'¢S’ ,

i
where N = (F,H), N =(§)so that N 7’5‘?N is an isovector (3 representation of SU(2)).
? is another isovector ((‘7\'.+ +TOIYNZ, T, i(,'ﬂ+- 7€ ) /¥Z) which transforms just like T.
The same pion-nucleon interactioq can be written in the form of £
Moo ~V27, 167V, 4] wien ¢l - (f/{’z )
ij T *'TPN—Z-

Through the correspondence 't; (a=1,2,3) )"a (a=1,2----8), it is straightforward to

construct the 5U(3) invariant meson-quark Yukawa coupling as /.\ i
£ a = =i j i i = a
}Lin!: fZ q I'Aa q M, ﬁf% q ['qj My with Mj %(2 ; M.
P

where | is i)g(?},.) for Ma= I =0 (17).
For the meson-baryon (8) Yukawa couplings, there are more SU(3) indices and therefore

more than one SU(3) invariant couplings in general. Let us do a few exercises.

(a)  B(BB(BIM(D): g E’JP Bl M =g Te(EB) M .

Note that TrB= TrB = 0 and M(;_)§ = 3; M .

(b) E(Q)B(E)M(g): Recall the decomposition of 8@ 8 =1+8, +8, +10 + 10 +27
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There are two different ways to make 8 from E(_@_) and B(8) to match M(B). Therefore, there

are two independent Yukawa couplings as
= = - =i J =i .k ,j
M, . =t Te(EMBYg Tr(E B W) £ 3. w4 g B By M)

g, (Tr(Ta‘ M B) + Tr(B B M)) + gF( Tr(B M B) - Tr(® B M))

The coupling &p is symmetriec under interchange of B and B (not counting the anticommuta-
tivity of fields) and the gp coupling is antisymmetric. Another way of writing these
Yukawa couplings is to use the expression

i . Aa = i_ Z l_a_ i_ Aa . 8
B, ZﬁB ’ Bj aﬂBa’- Mj ?ﬁMa {a summed over 1,2.-8)

] a
Then, a

M = /7 gD dabc B B M —z/_g a Bb M {(a,b,c summed over 1,2...8)
int :

From this form of coupling, it is easy to read off
= 3 5 + 1 3 ry T i
Hine =1 (gy+edp T ™ - 1737z 8 + }2 gp) A Yp K+
From experimental determination, we know that gD/gF = 1,5~ 2.0.
{c) M(8) M'(R) M'"(R) couplings
'The SU(3) group structure is identical to that of E(g)a(g)u(_s_). Therefore, we expect

two independent couplings most generally from group theory. However, if these meson octets
are self-charge conjugate, an extra condition is imposed on the couplings ( and one of

the two coupling must go away).

Under € conjugation C Ml Cwl = _éC) Mi (,%C) is common to all 8 components),
3

the coupling

= fD (TI'(M(I)H(Z)M{B)) + TT(M(I)M(B)M(Q_))
+ £ (TeOULU@EE) - HuEUE) - 35 3D

int

transforms as

- F
c X, ¢l iC) §C’?§C’(3¢‘D’ - X ))_

int

If ’Zl(c) ’Zéc) ’ch)‘ = + 1, then fD # 0 and fF = 0. This is the case for the Z-H'O_O-
coupling with 27F = (Af1318), K*(1434), £/£'(1273/1520)). If ’[lc) 29 2{? = -1, then
ED = 0 and fF # 0. This is the case for the 1 0 0 coupli_ng. It should be remarked
here that from the Lorentz invariance and the subsidiary condition on the spin 2 fields
( 1= ¥ 1uy= 0) the 2-0-0 coupling has to be of the form of

v
g 3.8 .4 TN (symmetric under interchange of a and b),
ra¥'bh e

abe
while the 1-0-0 coupling should be of the form of
(?5 3 ¢5 a é 15 ) V (antisymmetric under a«s b ).

Check by yourself that there is no contraint imposed on the meson-baryon coupling B(H}B(E’JM(S)
(d) BUD)B(F)M(B’) (Ae:rm Yo\ etc decay couplings)
B PMIE)Y can make only one 10 (the other one is E), so there is only one independent SU{3)

coupling. - Hmnoj Wk 4+ h.e.
pling )qﬁm 85 410 B BY M



{e) Two-body scattering amplitudes (or effective four-body interactions)

(ff I 5 l 1:> with S = SU(3) singlet (ignoring SU(3) breaking interactioms).
In order that Sfi £ 0, ll) and lf) must belong to the same SU(3) representation, or
equivalently, <£f| and ]i) must be able to form an SU(3) singlet. The SU(3) structure of

the scattering M(8) + B(®—> M®) + B(E)

is given by o . o _ _
Y alTr(BBMiMf) + aZTr(BMinB) + a, Tr(BBMfMi) + aaTr(BMfBMi) + a5Tr(BMiBMf)
+ aaTr(BHinB) + a7Tr(BB)Tr(MiMf) + gSTr(BMf)Tr(BMi) + agTr(BMi)Tr(BMf) .
Here, I put the bars on the final particles because they refer to the creation opearators
which transform just like the amnihilation operators of their antiparticles. "In fact, mot
all of the 9 amplitudes are independent, as you see from .

lixﬁf> 1 + 10 + 10 + 27

II.‘><'.I T !

[Bxm,> = 1 +8,+ 8 +10 + 10 +

One of ad ag is dependent of the others.

2.2d ° SU(3) Clebsch-Gordan coefficients

It is, in principlg’straightforward to figure out the SU(3) relations among couplings
and amplitudes from the tensor analysis given above. However, there is a short cut in
this analysis if you know something equivalent to the Clebsch-Gordan coefficients of the
rotation group. The SU(3) Clebsch-Gordan coefficients are tabulated for the products of
SU(3) representations which appear frequently in particle physies. T will present them
in the form of de Swart (the same as those tabulated in the Particle Data Table).

First specify the states by SU(3) representation m (ml,B,lﬂ;Ia,27""), I, 13, and Y.
The the SU(3) C.G. coefficients are defined exactly like the SU(2) C.G. coefficients;

. l n, I, 13, ¥:>|E$ 1!, I' Y :}
= ;SE“’ ", I3+, T4y |r_l, I, 13, Y5 'y 7, I3 Y> ]n y Iy I+, Y+Y'>
The C.G. coefficients above are given, for instance, in MacNamee and Chilton, Rev. of Mod.
Phys. 36,1005(1964). The tables are quite large in size. It is possible to separate
these C.G. coefficients into two parts, one that depends only on (m, n', ' and (I,I',I')
and the other that is the SU(2) C.G. coefficients (dependent only on (I,1',1") and

(13, Ié)). The former part of the SU(3) C.G. coefficients is called the isoscalar factor
in the sense that it does not depend on the third components of isospins. If you express
the C.G. coefficients in this way, the tables are much shorter because you already have
the S5U(2) C.G. coefficients. They were tabulated by J. J. de Swart in Rev. Mod. Phys. 33,
916 (1964) and also in the Particle Data table. Take, for instance, the product of 7T

ey« 1) =8 1 -l oD x 8 55 1)

and p (proton):
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. all Y = +1.
(Note the SU(2) €.G. sign convention (which appears in p.2.18) for the second factors.)
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SU2) CLEBSCH-GORDAN COEFFICIENTS AND SPHERICAL HARMONICS
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SU{3) CONVENTIONS

for Isoacalar Factor Table on next page

Since January 1970 we have used the convention that the firat particle shall be a baryon,
the second & meson (R. Levi Setti, Proceedinga of Lund Conferencs, 4969, p. 339 and Table OJ.
Note, for comparison, that the de Swart table of 8X8 is marely labeled with symbols like
(I 2 /2, Yi = 1, Iz a 4, 2 = 0), which can be read either as (Nn) or {KF). Since there
ara no decuplat mesons, howsver, his 8X10 table is unambiguous; it rmust be read with the
maeaon {irst.
‘ The de Swart convention viclates the other convention that the N,N» coupling shall be D + F
{as opposed to ~D + F). Ta get D + F one rmuat use the firat line of tha "N" table, which
reads. . . 3N5710|8,) + 1/2|85) as opposed to. . . -W5/10]8,) + 1/z|sr). The first
lins rmust then be labeled Nx rather than KZ, 1.e., with the baryon first.

Levi Setti further advocates the convention of writing the baryon first for SU(2} as well as

- 5U{3). For sxample, the sign of the amplitudes as plotted on his and our Argand plotl comes

frora using cur SU(2) Clebsch-Gordan coelficionts (Condon Shortlay notation) and writlng the
baryon first. To maks it easiar to abide by this univarsal convention we have changed de Swart's
8% 10 {SU(3} table to 10X B, with tha help of his Eq, (14.3):
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= SU(3) ISOSCALAR FACTORS

Adapted from J. J. de Swart, Rev. Mod. Phys. 135, 916 (1963)
{See note on previous page concerning conventions)
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H, =ﬁga[‘1‘r(§lﬂ3) ~ Tr(BEM)] and

=1 =1
8 "4z Bp and g, ~7F B

8-8-8 couplings of SU(3)

Hg =428 [Tz (BMB) + Tr(BBM)]

in the Note. = gs/(gs + ga)

TaBLE 4.1
Charge irx;g::mdcnt Tr(BMB ) Te (BBM) ) He Ha "
Nt Nz ] 0 4 A g
I ZK+E-ZK 4 0 g, ga g
TxZ = ~% - 0 —2g, =2z
AZ-a+Z - An 7 = 5 G 0 i(1~a)g
Adn® % % —i5h 0 —(1-a)g
Iz + + Zg,- 0 All=-a)g
ZiZn 0 = s —g, (1-22)g
IN<K+Nz- ZK 0 ﬁ gy —~d, (L —2x)g
NNg° % 3wt V3 —(l-dag
SARFAZEK & % —586 . K4
Ziy -% % K8 =34, —j(i+2)g
ANK+NAK _./is 312 -ﬁg, —-J3g, —3‘-3(1 +2q)g

To bz exhaustive, we give in table 4.2 the explicit expression of the charge
independent forms corresponding to our particular choice of phases as
included in the 77 matrices.

TasnLe 4.2
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iZxE.w
JTL' - ::+Edﬂ'
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Gp—Ba)nt+ VI(Hpr+part)
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(PK+—RKO)I4 VI@EK-S4 FEYKY)
(Fp+Tin)n®

A=K+ 42K + (5 K-+ FKR)A

(FFE- 4 Fizoyy

AlpK-+nKd) 4+ GK*-+nK)4

ANK+NAK
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2. 2e 'SU(3) breaking and mass formulas

The SU(3) symmetry is far more approximate than the SU(2) isospin symmetry, as
we can understand from the large N—A-Z—E mass splitting in contrast to the p-n
mass sp]_.itting. The origin of the SU(3) symmetry breaking is, to large extent, under-
stood in quantum chromodynamics. At more phencomenological levels, we have to trear
SU{3) symmetry breaking intaractions as medium-strong interaction (stronger than
the electromagnetic and weak interactions) very roughly of the order of 1/10 of
the strongest interactions. We know that the SU(3) breaking interactions (other than
the weak and electromagnetic interactions) conserve I and Y, and therefore transform

like a quantity of I = Y = 0. The simplest possibility is

Jﬁﬁim(SU(B) breaking) .. )'8 01:'1/% (T:L + Tg 273 ) .
An explicit example for such "interaction" term is the quark mass te.rms with m, = my #
Bgs Mint(SU(B) breaking) = m(uu + dd) + msss , '
=( %m +~]3*ms)(Eu + dd + ss)
+ (%’-m -%ms)(gu +dd - 2538) A I+C:\8 .

It is conceivable that the breaking interaction is not only I=0 of 8, but alsoI=0 of 27,
Even if I=0 of 27 does not exist in the Hamiltonian or the Lagrangian, it can be gene-
rated in the second order perturbation of Hint (which is presumably small enough to be
ignored in the first approximation). We therefore make the following assumtion on the
5U(3) breaking:

Assumption: p = JUSU(3) singlet) + X (I=Y=0 of 8) + Ne (I=Y=0 of 27)
£Ssumpeion strong int - int - .

with }%_nt(I=Y=0 of gl) << }Lint(I=Y=O of _8_) K %CL) .

Mass formulas: Keep only H(I-—*Y=0 of 8) for SU(3) breakings. The mass is the expecta-~

tion value of the total Hamiltonian for a particle at rest:

g = <o M @) 1= ot (0, - o) [}é 0y + 2

18(cn] U(0,~oc) oD
The right hand side should have the SU(3)} structure as

' 1 1 2 3
1 +cAB or 1 + Zc (] +T,-2T;)
For E(8),
BV, (0) [Bg)> > mOTr(EB) + o Tr(BAGR) +.m ,TT (88 A g) v
+ m,
= 1 i_3
= (m + ~F L3 @) Y3 m, B 133 -/Tm253 :
Decomposing this expressicn into each baryon, one finds
my = m(') + m:'!
1 =
mA = m) + 2(nl+m))/3 my m0+£m1+m2)/f§, [1129 MeV vs 1135 MeV]
i t = -
mZ=m0 with 4 m Y3 my mN+mE“3mA+mZ
= ¥ T m' =~ 3nm 2 - 4
tnE mo <+ my 2 2

As is clear from the 8 x 8 decomposition, the BB amass formula contains two unknown

Parameters in addition to the symmetric term.
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For BlO’ there is only one unknown in additiom to the symmetric term because

10 (Bnu)) and 1___0: (Eﬁ:n)) can make only one _Ei .

g 1 (51, 25k, _ , =3ik )

= —uk FEAL
(m +m/f‘) By = 3m1 Bijp -
Here Eijk and B,., are totally sy'umetric under interchange of a pair of indices. For
ijk Tt
instance, Blll = A, 3113 = 5131 2 W3 eveeaen
— t
mA = mo
mz: m(') + % mi
L2, with Tp = W T /73
T I R | m} = -{3m )
= 1 '
Mg mo + ml
mn-m__,,_=m=,.-mz.=mz,—ma .
147 MeV 148 MeV 142 MeV

The agreement with experiment is again quite good. The same result can be obtained
through the SU(3) Clebsch-Gordan coefficients, too.
in
8
For M), <M (p I)Ltot

(O)IM (jél;> has the same SU(3) structure as BB' But, the fact
that 3&(0) is even under charge conjugation imposes a constramt, eliminating one of

the two unknown parameters; - outgoing !

1 ml#’ ()IMJ :i.u> <C( J.nl Mt t(o) IC(M‘] >
(Mj 1n{ mt(o) !ME‘ 1n> _

=31

Therefore,
il M 0udE> » ngf e+ wp® (W

with no Tr(MjM -iMB) that viclates the C invariance condition. It is customary

tot + MéMi) !

to apply this mass formula for the squares of boson masses (in contrast to tHe case of
fermions). In the approximation of ignoring the second order SU({3) breakings, it should
not matter whether we apply the mass formula to m or m2 because the difference . appears
only in the second order of breakings. However, empirically, the Gell-Mann-Okuboc mass

. formula seems to work more nicely in squared mass rather than in linear mass. One way
to advocate squared mass is that in Feynman diagram calculations boson self-masses are

generated in m2 instead of m. But this is not a convincing argument.

1,2, 2 _ 2_1 2 2 _1
Z(mK+mK) %-A(Bm,z-i-mn.) , while m, 4(3m2+mn)
0.246 Gev? 0.230 GeV® 0.496 GeV  0.446 GeV.

These mass formulas can be put into the form that applies to any representation of
particles. Let us suppose that x (0) is sandwiched between N-dimensional represen-—
tations of B or M. We should conscruct the 8th component of cctet from N-dlmens:mnal

representation matrices of Aa(a=l’2"““8)' There are two ways to construct irc:
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The third term in the right-hand side can be rewritten as
dgap Naly f- Arh A A - 5 A ArAAHAAGEA A '/%- Aghg
=f1‘2" ZaAaAa + J%(AlA1+A2A2+A3A3) - ":?.%ASAB
- -/-E- ZE;AaAa + 2/3 T° -‘%—YZ ,

" )
where I and Y are the (N % N) representations of the isospin and the hypercharge

operators. In its final form, the Gell-Mann-Okubo mass formula is written in the form

£ ]
SE@(Am) A, , 0 B “‘”’)”> My + MY + M, [L(I+1) - 2 v

SU(3) breaking in coupling constants:

The method of deriving formulas is very similar to that of mass formulas. For

coupling, for instance, make a tensor that transforms like l out of §(§), B(i),

and Mi3);
glrr(sau). y - ngr(BBA M) + gBTr(BM?t B) + gATr(BJ\ MB) + gs'rr(BMBA )

+ g¢ Tr(BABBM) + g, Tr (BM) Tr(B}\B) + gSTr(BJtB) Tr (BM) + ggTr(BB) Trcu).d).

Just as in the M{f)+Bis:—» M{8)+B{8) scattering, eight out of nine constants are independent.

1.1

Furthermore, C invariance imposes constraints for the -5 - ('.)-+ couplings'as

2
8] = By» B3 T By 30d By = gy -
For the Eﬁga@pﬂg couplings, there are 4 independent SU(3) breaking couplings to the
lowest arder siuce —
8x8(=BQ;')xHAs)= 1+8, + 8 + 0 + 10 + 27,
e

8§+ 107 % 27°F 35 .

8 x10 (=M@X B
There is one testable relation known for the 10-8-8 couplings:
- - -
& elSap) + /T g(Se AT = LeaEhAD) + £ @B AN

where the signs of the coupling constants above depend on your sign /phase conventions
of fields.
Electromagnetic breaking of SU(3) symmetry:

The 8lectromagnetic current transforms under SU(3)} like
B = e( 2T Yu-1T7d-157s) =e"7—l—l + s Agda
f 3 s 3 I 3 s 3 73
~-(2T Tg 3)

The matrix element of .Jj,l (x) is given in the Lorentz space in the form of

in the minimal coupling.

<Bie )| "(0) [Brsxp) > = E;E—pupts.ﬂ;Fl(q ) + 1 %;q Fy(q’ Yu,,  with q=p'-p.

F (0) is the electrie charge and FZ(D) 1s the anomalous magnetic moment. Each of Fl(qz)
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and Fz(qz) has the following SU{(3) structure. .

a [Tr(BAB) - Tr(BBA)] + b [Tr(EARB) + Tr (BB APl with A e% A, + 71-1

Q 3 2/378°
However, the b term must be zero for F (qz) ar q2= a.
') At q2= 0 (egual to qﬂ 0 in the llmlt of degenerate mass), F (0) must give the
electric charge Q. Q flips s:l.‘gn under Bj‘ —y BJ and BJ-—P BJ . In the above expression,
the a term flips sign under this operat:mn, wh:.le the b term does not. Therefore, the b
term ig zero at q2=0 (not at qz# 0.
On the other hand, the magnetic form factor term Fz(qz) has no constraint. Writing

the anomalous magnetic moments in terms of z and b, we find

= i = -2 =1 - 1 -1
/u.p-a+3b, /-Ln 3b, ,uA 3 b, /f*_*' a+3b,_/-(zo—3b
1 = -2 - - l 1
/Jz__ —a+3b, /iao— 3b,ﬂs_— a+ = FA—Z" 3b.
Experimentally,
/.{p = 2,792845 -1, F‘n = =1.91304, /-(A = - 0.613, /J T+ = 2,38~ 1, /‘ = -1l.14+1,
# R 1.250, M_=- 0,69 + 1 in the unit of e}i/Zm c.
The transition magnetlc moment: ‘MA -3 is defined through
</\(p )inl (O)[ Z (p) ) =  {the same expression as in the previcus page),
and it can be determined from the Za—-r')'/\ dacay rate. These relations are valid to

the first order in the electromagnetic interaction and to all orders of SU(3) symmetric

strong interactions. No SU(31) breaking strong interaction {(a /\B) 18 included. When we
test the predictions with experiment, we may compare the anomalous magnetic moments
measured in the unit of the common nuclear magneton, eH/2mpc, or the unit of eH/Zmic
with L being N,A,%, 2. Since no strong SU(3) breaking is inecluded, we can not tell
what is the correct way to compare the predictions with experiment.

Note that the 5U(3) predicts

#pz I+’ Hn =Fso’ and/lz__' =lu'._.-'
These relation result because the electromagnetic SU(3) brj_a_king (~/\ } commute with the
" 1", = - - l _3 - . ; _
U spin subgroup"; [ AQ’ A‘GI [Aq, ;\7] [ ;\'Q’ 2 33 + > AB] 0. Since AQ is a U

spin singlet. If one classifies octet components in the U-spin, one find that

(Z+, p) - doublet,
(T, 5) - doublet
_'-'-'_,0, - 2}_‘_, + A, n) - triplet.
The expectation value of a U—spin singlet operator 1s common to all components within
the same U-spin multiplet.
The electric charge radius, defined by <r2>= %(dFl(qz)/dqz)\qEzo obays the same
SU(3) relations as the anomalous megnetic moments.

Electromagnetic mass differences:

This is the second order effect of Jem(x) since

!A.
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‘m, o< ; Jd x d'y A/‘(x—y)<Br IT(JI,L =) IS [BES D
The SU(3) structure is A_ X A_ = (T -1 T )(Tl —‘é-Tj) A 1 + Tl + Tll .
Q Q 1 3 7i 1 3 73 1 11
For B(3), therefore,
_ =11 =i_1 =1_1
Am = my BlBl +m 2 B B1 + . BlBl + (nonelectromagnetic terms)
’I‘r(B }\ BA,) +m Tr(BA B) + m'Tr(BB A.) + (non e.m. terms). [7&3 =c, 1+ cz.'\.[_
Explicitly, (Q/"Tr TA) Tr(B/LQ (but not :Ludependent)
mp:mN+m3 mN, mﬁ—mz L mz°=m +2(m1+m2+m), mz_=m.z+m2,
m_=m, , m_=m +m. ~1.29 -6.4 -7.97
=0 = = - (m_ - mn) + (q_o - mh_) = (m - m _) [Coleman-Glashow]
2.2f Nonets . P = s z

We often find nine hadrons with the same JP and approximately the same masses. Each
set consists of one singlet and one octet which are close in mass. Because of the SU(3)
breaking transforming like A_ of octet, a singlet and the I=Y=0 component of 8 mix with
each other and two states of I=Y=0 appear in two linear combinations of 1 and 8. We
often call such approximately degenerate 1 and 8 as a nonet, (There is no 9 dimensional
rapresentation of SU(3}.)

) J =1/2 I=1 I=0
1~ K*, K* (890 MeV) p (770 HeV) W (780 MeV) ¢ (1020 MeV)
2t K*, K* (1420 MeV)  4,(1310 HeV) (1260 MeV)  £' (1514 MeV)
3/2” (N'(lSZD MeV), 5’ (1670 MeV) N (1520 MeV), A (1690 MeV)
=' (1820 MeV),
Take the case of JP = 1 . SU(3) predicts the following:
(a) C-4-0 mass formula. (@ (K*) + n’(K%) = 23 n’(4g) + n®(p))
' Here, 958 = (uu + dd - 2ss)//6 . Plugging in the experimental values, we find
Ll k%) + af @) = n2 (K*) = 0.795 GeVZ,
while 1 2 2z, _1 - 2
703 my + w, ) = (3% 0.614 + 0.593) = 0.609 GeV 2

1 9 2 1 5 } # 0.795 GeV
=(3m; +m ) =(3x 1.040 + 0.593) = 0.928 GeV
4 ? P 4

(b) 1 —>0 + 0 decay couplings. Note £irst that ;71— 8 + B8 because the singlet
made of two 8 is symmetric under interchange of two 8, while the 17-0 -0 coupling has

to be necessarily antisymmetric, (63?Fd qhﬁadb)VQL(antisymmatric in a+sb). Then keep

in mind that small SU(3) breakings in m?zss may cause large deviationfrom SU(3) symmetric
pred_j.ction unless one separate SU(3) breaking effects as much as possible. In the decay
g\z.’PP' P /mv , we should define the reduced width F‘ r‘/P (or ‘l:"-—.: r
< mv/p } and compare I with the 5U(3) predlctions. [In case of f-th wave decay, the

reduced width should be I'/p2'L, ]

predicts

rate of p~wave, T~

The SU(3) symmetry for the 17-0" -0 coupling (BA anly) -
= 4+ — .+ + - + - 1,3

F(famsa) + T®—KT) : Tg—>KK)=1:5:7 .
Experimentally from the observed decay withds, '

Fr-nia « Faxts %) : g — €& = 1.86 : 1.10 : 1.00.
Ar
2

-
_f' and d can annihilate into e & through the electromagnetic 1nteraction of 0(e).

(C) 1=+ ete” decay rates. Since J/Pl transforms like sum of A. and of 8 , only
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The transition matrix alements are written in the form of

_:_-Q..,.,< nv
V{8 ie 1
@ + ~ E g ,(uks.,;L k's' 2< nIJ (o) IV(8)> .

k- k (k+k')

A3 g

From the fact that Jy -\.-‘ 5 + m , we £ind that

G RO TR Gl BN O d >+ <ot a8 (O)Iw y=1 J% 0.
These decays are s-wave decays, so the reduced widths are r’/p [ o< ]<01D‘IJ (o)lv'jz
From the e.xperlmentally observed widths,

FfPrete) : Twse’e) : Fpre'e) =[18.0 : 1.92 : 2.64] X 1078,

A_'I.l of (a), (b), and (c) show that neither of &) and ¢ really fits in 95 norﬁJ One
might argue that deviations from SU(2) symmetry limit are due to large SU(B) brealing
effects. But the breaking effects appear to be much larger than aﬁywhere else. Why ?
The reason is that dg and G)l are nearly degenrate in mass and even a small SU(3) breaking
generates a large mixing of the two states (degenerate perturbation). Under this
circumstance, we can hope that SU(3) predictions are applicable after the mixing is taken

into account. Let us wrlt:e the 2 ® 2 mass matrix in the 6 -&J or ¢- wspace:

2 2 “‘ +{dg i )b y <4 ainuﬁbr [ @)

o” + bm” = :Ln
el My, 145> my ,
_/ cos® sin8) mg 0 ) cos® - sin®
~sin B8 cos 8 0 ng, sin 8 cos 8 }°
Here m and mg are the masses of 1 and 8 in the S5U(3) symmetric limit, and }ﬁr is the

5U(3) breaking of A'B of 8. The eigenstates of mass are
9.58 cos 8 —GJl sin 8 ,

#
(N 68 sin@-i-{o cos 8 ,
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The mixing ang]:e 8 is large, as is expect:e.d It can be determined from experiment as

1]

follows:
(a) From the pass formulas. .oom (.P) = m +<.P n%r[ PHI) T (D)

' in in

m? (K%)= m§-+<K* (X x5, @
2 2 _ .2 2 in in
m(m)'+m(¢)~m~%+m§‘+ <dg | Moy 187 >

from 4 = 4 cos B + @ sin 8, me + ' in, R |4 in_) = m? cos’g + rrﬁsinze, (3)

8 _ . and 8 8 bri"8 é

4, =~ ¢ sin 8 + wWcaos 8, - 2 _2 .2 2 2
1 oy = mg sin 8 + m,cos 8. (4)

The SU(3) symmetry requires (BS only)

(finl)‘{— Ip o <K*i“13¢br]£{*i“> :<dBi‘] Mo, 185> = 231 2

2 2 in ) ,
The four unknown parameters (ml, mg» <¢58 l)(,brfdalr? 8 ) with the four constraints, (1)

(2}, (3), & (4).



We obatin 8 = 41° or -41° (fairly semsitive to small errors in mass values).
(b) From 1l —» 0 0 decays.

SU(3) predicts. F(é-—rK"FK_) = % cosze F(f+—’ 71:+n0) instead of .ﬁ(ds-—p K+K—) =
%ﬁ( f+—r J'-ti.-?P) This relation leads us to c0528 =0.717 or &=+ 29°,
{c) From 1;.—-3- e.we+ decays.

SU{(3} predicts [:(Po—oe+e_): F(d-e+e-) :f‘(w'-.éf'e_‘) =1 %—cosze : _;_
Using the experimental data on F(_po—-e+e_)/ F(aj-_—b e+e-) , we obtain 8 = + 32°. Using

, 2
sin 8 .

the experimental data on [(@W-» e+e.-)/ "]""(d—+e+e—), we obtain 6 = + 38°. They indicate
typical errors involved in this kind of estimates. )

All of the experimental cobservations (a2}, (b), and (¢) point to the value B8 ::-;300.
In order to determine the sign of @, we need a little theoretical consideration, We
favor § = + 30° rather Fhan - 30° leading to ¢ consisting dominantly of ss or Tg .
For tan 8 = /172 (8 = 35°), (called the ideal mixing)

¢ = {% (Eu+?i"d—2§s) cos B - (—3]; (uu + dd + E-s) sin 8 = -s8,

W= J%é'(;u-i-ad—ng) sin & + .ﬁj]; (uu + dd + ss) cos @ =_'/-21- (Eu + dd)
For tan 8 = -flﬁ_l _ _ 1 _ _ _
¢ = (Zuu + 2dd - is)/3 and W ='m- (uu + dd + 4ss).
The reason why we favor d~-ss 1is based on the empirical selection rule called
the Okubo-Zweig-Tizuka rule (or the 0ZI rule). The 0ZI rule requires that hadronic
processes, either decays or scatterings, are suppressed substantially when they involve
pair ammihilation/creation of s and s. If we apply this rule to the ¢ decay, we
come to the conclusien that
if da-ss, the decays of ¢ into 71.:'- T 7, f+ e, Jro -;EI-, etc are suppressed,
while ¢ — KK is not. .
Experimentally, the ¢ — KK is the main decay mode of 4§ despite the tiny phase space
(1020 MeV — 2X 497 MeV in p-wave in contrast to P-—» 3T with 1020 MeV - 3 % 140 MeV).
Another supporting evidencefor the 0ZI rule is found in # production processes;
' 8( 7 p—> én) I S
d(7p — wn) or Cf(m?p-tﬁﬂb 30 w00 -

Therefore, we are now confident with the assignment that é~- ss. The 0ZI rule was

rather a mirky empirical rule in 1960's to early 1970's. 1In 1974, this rule suddenly
received a dramatic experimental verification through the discovery of')tf paricle(cc bound
state). The justification based on the asymptotic freedom of QCD was also given.

Nonet coupling hypothesis (Okubo)

Group theoretically, the coupling of V(1) and the coupling of V(8) are not related
to each other in any way; they are two independent couplings in group theory. However,
there was a theoretical conjecture as early as in early 1960's that the coupling of
V(1) may be related to the coupling of v(8) in a simple manner. Such relations have

been verified experimentally thereafter. They are indications that we may be able to



learn a lot of physics by building a physical or dynamical (as opposed to group

cheoretlcal) model of hadrons based on the quark picture. The nonet coupling assumptior
is stated for the 1 - %f, %f couplings as an example in the following way:

SU(3) group theory only: ngr(B8 8 8) + ngr(B8 8 8) + gBTr(B B.)- vl .

Nonet coupling hypothesis: ngr(lf’:BV8 18g) *+ gzxr(BS gVs_1) »

where p°ff2' + w/ﬁ, .P+ , K*+
= - .0 *o - i 1 ed
Vop = J’*: P /E+a/ﬁ, K,g (VB)j * 3 aj v,
K , K -

The similar assignment for the 2 mesons (Al, K , £, £Y).

The ideal mixing 1s not realized for the Q@ mesons (7, K, K_,"Z ’z ). (W,K,E'Z) are
approximately an octet and 2’ is approxiamtely a singlet. By more detailed analysis, om
can determine a small mixing between 2 and ?' with mixing angle 8. The angle 8 can be
determined from many decay modes such as 1= O +7 as well as from the deviation of
the masses from the G-M-0 formula. From the G-M-0 deviatiom, 8 = i_10° or so. Form the
“decay mode analysis, B 2 -10° is favored.

2.3 Static quark model and SU(6) spin-unitary spin Symmetrry.

2.3a. G5U(6) transformations of spin and unitary spin

SU(3) transformations exp(r—}Jﬁ ) do not change spin directions {nor any other
space-time property) of quarks. SU(2) spin rotaticns exp(l—d'e } do not change flavors
(u,d,s) of quarks. The strong interaction Hamiltonian seems to be approximately invari-
ant under the SU(3) transformation and, if gquarks are nearly at rest, invariant under
spin rotations, too. [Tf quarks are relativistic, the Hamiltonian is 1nvarlant only unde
the simultaneouslrotation of spin and orbital parts, namely the rotation by T 1 Provide
that the quarks inside of hadronms ‘are approximately at rest, can we expect that the
strong interactidons are approximatély invariant under combined transformations of SU(3)
flavors and SU(2) spin ? The answer is Yes.

Since we consider transformatioms which mix not only flavors but alsc spins at the
same time, we are actually dealing with the most general transformations among the six
objects, u—quark spin up and dowm, d-quark spim up and down, and s-quark spin up and
down. The transformations are SU(6) group transformations. Written in the exponentiate

form, the rotations cousist of

.1 1 ‘ 1
exp(iz}\a 2 exp(izo?lej) , and exp(l—ihad; eaj) .

The transformation included 1n the third one above is, for instance,

exp(i3 A,0,0) = 1+ 3 Zi0 A0, + 0% ,

)], (- B (-0

and therefore
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The combined spin-unitary spin rotaticons change both spin and flavor by one operationm.
SU(6) group has 62-~ 1 generators [all possible hermitian matrices of 6X & less unit
matrix]. When we express them as we did in the previous page, they obey the commutation

relations as follows:

[%7‘3’ FAT =it %;{ (a,b,c = 1,2,3--.8) SU(3) subgroup of SU(6).
[‘!2'*0'1, 'l‘d'j] = i J %6;{ (i,j,k = 1,2,3) SU(2) subgroup of SU(6).
1 1
[ E dll ‘z—la] = Ol
1 1 ~ 1
[ 50 A, 20 =L f . 792 >
1 1 - 1
[Fo ATl =18, 504,

1 1 C.l, 1,41y 1 1, 1 1, 1
[3 6 A 70540 =2 159, ?’J]i 7% 2 "b},,,"' Z{Edi’ 5"}% [3 Aa> 244
- : 1

1 E’ijk. dab 2 1’ 15 abc 2 lr:

Here c:.soverﬂlz BWithAO"': L.

The algebra closes with these rotations.

2.3b.  Particle assigmment

TIrreducible representationsof SU(6) are constructed from products of 6 ( and E, if
you wish to use it), just as we did for SU(3). However, from the physical understanding,
it is often more convenlent to expresse states in term of a pair of indices ( 1i,4)
referring to SU(2) spins and SU(2) flavers instead of a single index running over 1 to 6.
Mesons {from qq)

1 (singlet) Ea'i qa,i/,/’é' = (E$uf + Efu‘ + E‘lldf + Etd‘ + E sy + 5’54)/\/”- .
33 (adjoint representation like 8 of SU(3))

—a,i _J:'_ a gl --c,k
@ 9,7 " F 5, Ej T %k
- lsga —c,i _lel—c,k + (continued to the next page)
= 3 Sb (q qC,j 2 Sj q ﬂ.c’k)
(L D



1 ¢i ,~4a,k 1lca koo .. ~.
+‘2‘ 6:‘1 (q qb,k - 3 Bb q qc’k) (Es _J_-) T
—a,i _ 1 ga—c,i _1lgi—a,k lgagi—c,k
+(q o 5758 U7 9,5 73 5 B tE 0% % 4 o)
i (§1 ;)
Namely, 6 x6 =1+ 35, 4 35

ES 2
(3,2) x (3,2) =(@+1, 3+ =(& L+ ((1,3) + (8,1) + (8,3))

The SU(6) group does not affect the orbital part of states, so particles assigned to the

same represenation must have the same orbital angular momentum. If we consider the

s-wave bound states of gq, we can assign lSl and 351 states in 35 as follows:

35 = (1, 3) + (8, 1) + (8,3

1
W< (7K K7D (P, K, K*, Bg)

The SU(3) singlet (apart from a small mixing to 8) ‘2' meson does not enter 35. It should

belong to SU{6) singlet. This particle assignment tells us about the degree of approxi-

mateness of SU(6); we consider the limit where 7T, K, 7, f;,tJ , and ¢ are all degenrate.
In spite of such approximation, the SU(6) classification of hadroms and SU(6) predictions
of some of the coupling constants work remarkably well. 7

Baryons Triple products of q. The lowest states are presumably those entirely in s-

wave.

La:il bsj] c,k + a,i|b,] a,i C:k] + a,i

c,k b,] 7 by ]

9,1 %,3 e,k

c,k‘
6x 6 x 6 = 56 + 70 + 10 + 20
]
SU(3) x 5U(2) (10, %) (19, 2) (8, & (8, 2)
ETETE » men 1= B= c R =al:=
(8, 2) (8, 2} (1, 2) (1, &

Ej * ED E « HY g « U1,
where the product of Young tableaus in SuU(3) and SU{2) spaces
are so combined as to make a specified overall symmetTy in SU(6

The baryons, N, N, Z,2 belong to (8,2) and the JF = 372" resonances, 4, Z’, E!,Q

belong to (10, 4). Therefore, 56 of SU(6) nicely accommodates the octet baryers of spin

1/2 and the decuplet of baryon resoncances of spin 3/2 (they have the same parity).

The other representations, 70 and 20, also group together nicely the existing baryon

resonances of higher masses.

2.3c  .8U(6) symmetry breaking

 lLorentz invariant theory can not satisfy SU(6) symmetry ! The free Lagrangian with
degenrate mass violate SU(6) symmetry.

-(0=iE$q~mEq
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This Lagrangian is invariant if the spinors are rotated by expC%dijaoiJ) [i,j=1,2,3]
and the coordinates are rotated as T— ' = RYX (R is the familiar 3-dimensional

rotation matrix). Only if we consider the quark and antiquark at rest,
— 'a —_
Lo=taTpza-mas
is invariant under exp(i%ﬁgj aﬁj) alone. If we write such Lagrangian for each flavor
and add them up, we obtain a free Lagrangian which is invariant not only under SU(3)
SU(2), but also under SU(6). Note that
) -y 0 —yd - = =
and -m

(IIYO Pyl d¥57d + 5h50e) (Gu + dd + s8)
are both singlets of SU{6).

What is an SU{6) invariant interaction ? Provided that we consider only quarks and

antiquarks at rest, we can write several examples. The simplest one 13

—i — 4] ; 0
Lo, =f 28 Tufaq vk 20 Trav =f =25 KX _V
i=n,d,s NR i=u,d,s i=u,d,s “
n=spins

where Vl‘is the SU(3) singlet vector particle field which will mediate a coulombic force
betwsen quarks and antiquarks. Since the fourth component of four-vector is invariant
under spin rotations, it is invariant under spin SU(2). If we take this model interac-

tion seriocusly, the force is attractive between g and E-and repulsive between 4 and q,

and between‘a and'E. Tts implication is that this force can not bind qqq inte baryons.

A little more complicated example of SU(6) invariant interactions 1s
= e = Mgl H
oCint g (a5A9 6, + A TV *a 2;\07:“7’5:1 v _
where (da, Vgﬂ V) form 35 of sU(8), presumably JP= (0+, l+, 1+). The SU(6) structure of
this interaction is 35 ¥ 35 —»1 . !

2.3d Color quantum numbers

Notice that-the three quarks in 56 are totally symmetric under simultaneous inter-
changé of spin and unitary spin indices. However, we assume that the three quarks in
the lowest baryons of JP = 1]’2+ and the baryon resonances of JP = 3/2+ are in s-wave.
Then We come to a contradiction with the Fermi statistics because interchange of a pair
of quarks in the lowest 56 results in no minus sign to the wave~functicns. We can
avoid this dilemma by any one of the following three options (maybe more, if you include
weird possibilities):

(a) The three quarks are bound in relative p-wave. This is a clumsy solution.
First, we must explain why the p-wave states come out as the lowest states instead of
the s-wave states. If the quarks are really in p-wave, ve expect more 56 with the same
P and different J which are nearly degenrate with (N, 2, 3 , Q.4 =/, :':’ S).

(b) ~ Iovent a new statistics that allows particles to occupy the same state up to 3,
but no more than 3 (parastatistics).

(c) Introduce new quantum numbers (called "colors') and assign three colors to each

flavor (referring to u,d,s,c,b,t) of quark.
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In the third option, the three quarks in 36 carry three differnt colors, so there is no
conflict with the ordinary Fermi statistics. For instance, £f+ of spin sz = +-% is
made of uT(red), u*(blue). and uf(yellow). If the wave-function is totally amti-
svmmetric in color space, A satisfies the required antisymmetry under interchange
of any pair of quarks inside.

Furthermore, postulate an unbroken SU(3) symmetry for rotations of three colors.

The total antisymmetry in coler SU(3) space means that 56 baryons are color singlets.’

We generalize this reasoning and set up the hypothesis that guarks carry three colors

and hadrons are all bound in color singlets.

: SU(6) ' color SU(3)
Baryons: EED » E
Mesons: w = '1 vaeew{pair of colors contracted)
O

As long as the hadron spectroscopj} is concerned, the optiom (b), parastatistics, leads
us to basically the same conclusionsz as (c),rghere have been many dramatic dynamical
evidences in favor of (¢}, such as asymptotic freedom. We choose (¢) as correct.

Now it is easy to congtruct an SU(6) symmectric force that is responsible for bind-
ing of hadrons: Introduce Vvector bosons which are 8 of "color" SU(3) [hereafter SU(B)E]
and 1 of flavor SU(3) [hereafter SU(B)f]. The reason why we Introduce a color octet of
vector particles, instead of a color singlet, is that such vector particles produce
through one-particle exchange

(qq) in coler 3 , [ any (qq) pair in 56 is in color 3.]

attractive forces in { i
(ag) in color
{ {qg) in color

(Eﬁ) in color

repulsive forces in '

3
1
8
8

The signs of the forces provide dynamical justification for the hypothesis that- hadrons

are bound only in color singlets. The static potential of the one-particle exchange is

8
2 . -
£ @ 143 1) @ ‘“(tif‘ q,)

written.in the form of

i or 2= 1 m m
where all indices (i,j,m,n, and a) are those of color SU(3). For the Eﬁ potential, we
] n _ l6engi_4 n b
obtain from  Z(A)I(W)? > 57 &) 37;-(@1(1.—3111 (called a crossing relation)
V(r).—__._l’.....ﬁi. 1 for (qq) and l_gi. 1 for (qq)
3 %m ¢ T MYy 6 X T g -
For the gq potential, an explicit decomposition leads us to
2 g2 1 1 g% 1
V) = -3 T for (qq)z and -z for (QQ)E .

The force responsible for binding is not entirely these coulombiec foreces, but their
signs are reassuring, at least. We later introduce these vector bosons as the nonabelian

gauge particles of color 5U(3) and call the "gluons".



